((n^2-4n)/(n-1))+(5/(n-1))=n+1

Simple and best practice solution for ((n^2-4n)/(n-1))+(5/(n-1))=n+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((n^2-4n)/(n-1))+(5/(n-1))=n+1 equation:


D( n )

n-1 = 0

n-1 = 0

n-1 = 0

n-1 = 0 // + 1

n = 1

n in (-oo:1) U (1:+oo)

(n^2-(4*n))/(n-1)+5/(n-1) = n+1 // - n+1

(n^2-(4*n))/(n-1)+5/(n-1)-n-1 = 0

(n^2-4*n)/(n-1)+5/(n-1)-n-1 = 0

(n^2-4*n)/(n-1)+5/(n-1)+(-n*(n-1))/(n-1)+(-1*(n-1))/(n-1) = 0

n^2-n*(n-1)-1*(n-1)-4*n+5 = 0

n^2-n^2-4*n+n-n+1+5 = 0

1-3*n-n+5 = 0

6-4*n = 0

(6-4*n)/(n-1) = 0

(6-4*n)/(n-1) = 0 // * n-1

6-4*n = 0

6-4*n = 0 // - 6

-4*n = -6 // : -4

n = -6/(-4)

n = 3/2

n = 3/2

See similar equations:

| 10-1/4x=70 | | 5x-12-3x+6=0 | | 4/15=h/35 | | -3.2+6.4=7x-2.7-6x | | (3h^2)/h | | 1/2x+2/3x=x+12.50 | | -3.2+6.4=7x-2.7-6c | | -3(-x^3+1-5w^2)= | | x^2-4x+y^2-2y-z^2=8 | | 11/x+2=130 | | t/10=11 | | 4=100/N | | 7x+1-6x=5+6 | | 1/2x+2/3x+12.50=x | | -3/5=x-4/9 | | 36/15 | | 9s+-5s+s= | | -(-4y-v+2)= | | 2u^2-6u-56=0 | | 10a-9.1=9a+6.9 | | 2c-(-40)=-2c-20 | | 18p+483=21p+462 | | -15t=-36 | | -(-4y-x+2)= | | 18p+483=21p | | 625x^4-16y^4=0 | | 3(2a-2)-5a=11-4 | | 3(2a-2)-5a=11-5 | | Z(Z+6)=16 | | 9y-8(y-1)+4=12 | | 3x-10=-4x+11 | | 216a^2-150=0 |

Equations solver categories